3D Digital Design Bachelor of Fine Arts Degree

3D design includes everything from computer graphics for gaming, virtual worlds, augmented reality, medical and scientific simulations, data visualizations, motion and broadcast graphics, architectural and engineering modeling, instructional multimedia, museum exhibits, and more.


84%

Outcome Rate of RIT Graduates

$44.5K

Average First-Year Salary of RIT Graduates


Overview

9 Majors That Launch Your Career in Digital Media

3D digital designers use their passion to create virtual elements featured in everything from games and movies to visualizations and augmented reality. Vehicles, avatars, lighting, and environments are all designed to imagine something new, visualize an idea, or simulate a process. As you progress through the program you will discover new applications for your skills in creating with this advanced software. On your first day in the program, you begin learning and using the same software that professionals use in related fields. As a program in a university setting, ample opportunity exists to collaborate with engineers, musicians, scientists, animators, and medical professionals which means that you will have opportunities to put your 3D design abilities to use while you are at RIT and when you graduate.

From day one, students in the 3D digital design major use professional 3D software in game design, virtual reality, medical and scientific simulations, data visualization, models for architects and engineers, movies, motion or broadcast graphics, instructional media, and more. In addition to the 3D software, students use motion and facial capture, projection mapping, and 3D printing. Traditional design skills are augmented with principles of time, motion, lighting, rendering, and compositing to create inspiring projects. Alumni work in top companies around the country and the world applying the skills they have learned to design solutions to all kinds of problems.

Interested in a Career in Game Arts?

We’ve got you covered. The 3D digital design degree allows you to explore your creative interests related to video games. You'll have endless opportunities to collaborate with developers and fellow artists on game and digital media projects. 3D design alumni have gone on to establish successful careers as game artists. Learn how you can use the 3D digital design degree to launch a career in game arts.

Accelerated 4+1 MBA

An accelerated 4+1 MBA option is available to students enrolled in any of RIT’s undergraduate programs. RIT’s Combined Accelerated Pathways can help you prepare for your future faster by enabling you to earn both a bachelor’s and an MBA in as little as five years of study.

Loading...

Industries


  • Design

  • Animation

  • Advertising, PR, and Marketing

  • Internet and Software

  • Movies, TV, and Music

  • Computer Games

  • Non-Profit

  • Retail Stores

Careers and Experiential Learning

Typical Job Titles

AR/VR Designer Architectural Modeler
Character Artist/Designer CG Artist
Concept Artist Digital Art Designer
Digital Asset Designer Digital Sculptor
Environment Designer Forensic Artist
Game Designer Game Developer
Level Designer Lighting Technical Director (TD)
Motion Graphics Artist Rigger
Special Effects Artist Technical Artist
Texture Artist User Interface Artist
Visualization Artist

Salary and Career Information for 3D Digital Design BFA

Cooperative Education and Internships

What makes an RIT education exceptional? It’s the ability to complete with real, relevant career experience that sets you apart. Experiential learning in the College of Art and Design includes cooperative education and internships, international experiences, research, and more. Participating in these opportunities is not only possible at RIT, but passionately encouraged.

Students in the 3D digital design degree are strongly encouraged to participate in cooperative education and internships.

Creative Industry Day

RIT’s Office of Career Services and Cooperative Education hosts Creative Industry Day, which connects students majoring in art, design, film and animation, photography, and select computing majors with companies, organizations, creative agencies, design firms, and more. You'll be able to network with company representatives and interview directly for open co-op and permanent employment positions.

Featured Work

Featured Profiles

Curriculum for 3D Digital Design BFA

3D Digital Design, BFA degree, typical course sequence

Course Sem. Cr. Hrs.
First Year
ARTH-135
General Education – Artistic Perspective: History of Western Art: Ancient to Medieval
In this course students will examine the forms, styles, functions, and meanings of important objects and monuments dating from prehistory through the Middle Ages, and consider these works of art in their social, historical and cultural contexts. The primary goals of this course are to learn how to look, how to describe and analyze what we see, and how to use these skills to understand and explain how art visually expresses meaning. At the end of the term, students will have gained a foundational knowledge of the object, scope and methods of the discipline of art history. The knowledge obtained in this introductory course will also guide students in their own creative endeavors. Lecture 3 (Fall).
3
ARTH-136
General Education – Global Perspective: History of Western Art: Renaissance to Modern
In this course students will examine the forms, styles, functions, and meanings of important objects and monuments dating from the European Renaissance through the beginning of the twentieth century, and consider these works of art in their social, historical and cultural contexts. The primary goals of this course are to learn how to look and how to describe and analyze what we see, and to use these skills to understand and explain how art visually expresses meaning. At the end of the term, students will have gained a foundational knowledge of the object, scope and methods of the discipline of art history. The knowledge obtained in this introductory course will also guide students in their own creative endeavors. Lecture 3 (Fall, Spring).
3
DDDD-101
Introduction to Modeling and Motion
This course is an introduction to the representation of form and motion in three-dimensional software. The course focuses on the development of visual and verbal vocabulary as a means of exploring, developing, and understanding composition and motion with digital geometry and in virtual spaces. Topics include the basics of lines, planes, contour, transforming lines into form, composing images with a software camera, interaction of light and surface, perspective, resolution of geometry, and rendering. Perception and visual thinking are emphasized in the development of projects. Projects will include modeling organic and inorganic forms, composition, level of detail, creation of spaces and motion. Structured assignments develop skills in concept generation, basic form making, techniques for creating motion, and craftsmanship. Emphasis is placed on workflow, teamwork, and the technical and aesthetic aspects of each project. Lecture 2, Studio 2 (Fall).
3
DDDD-102
Introduction to Visual Design
This course is an introduction to the development of surface materials in three- dimensional software, using the basic concepts covered in Intro to Modeling and Motion. Principles of additive and subtractive color are developed as they relate to the interpretation of physical phenomena within a virtual world. The vocabulary expands to include the interaction of light and surface attributes including: color, relief, specularity, transparency, and more. Projects focus on using color, value and texture to enhance the representation of form and space. The basics of node based materials design is introduced. Additional techniques for UV layout are introduced. Concepts are introduced through lectures, discussions, demonstrations, research, assigned projects, and critiques. Assignments develop skills in surface design, lighting and rendering. (Prerequisites: This class is restricted to students who have completed DDDD-101 with a C or better or equivalent course.) Lecture 2, Studio 2 (Spring).
3
DDDD-103
Imaging for 3D
This course provides experience in generating images, both still and moving, for use with the three-dimensional software environment. Students learn techniques for drawing perspective and orthographic views as well as cabinet drawings, oblique drawings, and other techniques. Students learn to create curves to import for model creation, to capture images photographically to use as textures, to create wrapping textures, to compile multiple frames into a movie, to merge segments together into a single movie, to record and incorporate audio elements, and to export results to the web and other media. Students learn to use a green screen to add live elements to their work. (Prerequisite: DDDD-101 or equivalent course.) Lecture 2, Studio 2 (Spring).
3
FDTN-131
3D Design I
This course presents a progressive study over two-semesters in terminology, visual principles, exploration, concept generation, process, and techniques of three-dimensional design. Using hands-on problem solving, student will develop an informed understanding of the 3D form and space with an emphasis on the elements and principles of visual design and their function as the building blocks and guidelines for ordering a 3D composition. A heightened awareness of form and space will be developed through lecture, assigned projects, and critiques. Students will also develop a personal awareness of problem seeking and solving, experimentation, and critical analysis. **Note: May be taken as a one-semester offering** (Undergraduate Art and Design) Studio 6 (Fall, Spring).
3
FDTN-141
4D Design
4D Design introduces students to the basic concepts of art and design in time and space. The course explores elements of moving images such as continuity, still and moving image editing, transitions and syntax, sound and image relations, and principles of movement. Computers, video, photo, sound and lighting equipment are used to create short-form time-based work relevant to students in all majors and programs required to take this course. The course addresses the both historical conventions of time in art and recent technological advances, which are redefining the fields of Fine Art and Design. In focusing on the relations between students' spacing and timing skills, 4D Design extends and supplements the other Foundation courses, and prepares students for further work with time-based media. (Undergraduate Art and Design) Lab 5 (Fall, Spring).
3
YOPS-10
RIT 365: RIT Connections
RIT 365 students participate in experiential learning opportunities designed to launch them into their career at RIT, support them in making multiple and varied connections across the university, and immerse them in processes of competency development. Students will plan for and reflect on their first-year experiences, receive feedback, and develop a personal plan for future action in order to develop foundational self-awareness and recognize broad-based professional competencies. Lecture 1 (Fall, Spring).
0
 
General Education – First-Year Writing (WI)
3
Choose one of the following:
3
   FDTN-132
   3D Design II
This is the second-semester of a sequential course. The focus is on composing three-dimensional form and its relationship to space. Students will build on their prior term experiences, which include the introduction to 3D principles, materials, and building processes. Students will develop the sophisticated skill of conceptualization. More advanced problems will be assigned and students will have the opportunity to explore a wide range of material and process possibilities for their resolution. A heightened awareness of idea development and design research will be explored. Inclusion of 21st century themes in the arts of social cultural and community. (Prerequisites: FDTN-131 or equivalent course.) Studio 6 (Spring, Summer).
 
   FDTN-232
   3D Design II Workshop: Topic
This workshop provides students with the opportunity to learn more about 3D compositions within a more open and experimental realm while still covering the core Foundation concepts. Different topics may be taken in the same semester. Topics may only be taken once. The focus is on composing three-dimensional form and its relationship to space. Material exposure will be determined by the topic’s instructor. (Prerequisites: FDTN-131 or equivalent course.) Studio 6 (Spring).
 
Choose one of the following:
3
 
   General Education – Natural Science Inquiry Perspective
 
 
   General Education – Scientific Principles Perspective
 
 
   General Education – Mathematical Perspective A or B
 
Second Year
DDDD-201
Modeling and Motion Strategies
This course provides extensive coverage of methods for modeling where evaluation of the appropriate modeling method to use in various situations is key. The emphasis in the course is on problem solving. Modeling challenges of various types are incorporated into the projects. With these techniques students create complex models of organic and inorganic forms using many techniques. (Prerequisites: This class is restricted to students who have completed DDDD-101 with a C or better or equivalent course.) Lab 2, Lecture 2 (Fall).
3
DDDD-202
Layers and Effects
Students learn to utilize render layers and to create effects using software that makes it possible to incorporate multiple layers of image and audio into a single project. Issues related to integrating images created using different renders is covered. Emphasis is placed on incorporating various elements into a cohesive whole matching lighting and perspective. (Prerequisites: DDDD-102 and DDDD-103 or equivalent course.) Lab 2, Lecture 2 (Spring).
3
DDDD-203
Scripting
This course covers the use of scripts to control various aspects of three-dimensional environments, models, textures, motion, production workflow and more. Students develop scripts to control particles, models, textures, motion, and interaction with the environment. Additionally students gain experience downloading scripts to micro controllers. (Prerequisites: DDDD-101 or SOFA-215 or IGME-219 or equivalent course.) Lab 2, Lecture 2 (Fall).
3
DDDD-206
Collaboration Project
The course focuses on playing a supportive role in the development of a three-dimensional digital design project from the planning stage, through completion and presentation. Emphasis is placed on working effectively on a team and providing leadership in a supportive team role. Methods for clearly communicating with a client are addressed including sketches, reference images, flowcharts and storyboards. (2Co-requisite: DDDD-101 or equivalent course.) Lecture 3 (Spring).
3
DDDD-207
Lighting, Materials, and Rendering
The course will focus on advanced techniques in lighting, materials, and rendering. Students will light objects and spaces. Students will use shading networks to incorporate groups of two-dimensional and three-dimensional textures into realistic and non-photorealistic materials. Students will learn to use texture maps instead of detail in models to increase interaction speeds. Textures are used to prototype simple models into complex scenes before completion of final geometry. Normal maps and displacement textures are used to create detail in model UVs. Use of the node-based system to control many aspects of the 3D environment is covered. Use of textures to simulate non-dynamic lights and shadows is introduced. Planning for the economical use of textures and for the replacement of models with texture maps in level of detail (LOD) situations will be addressed as well. Students will learn to design effective render layers and explore the strengths and weaknesses of various renderers to make effective judgments about which renderer to use in a given situation. (Prerequisites: DDDD-202 or equivalent course.) Lecture 2, Studio 3 (Spring).
3
DDDD-208
Anatomical Figure Drawing
Lessons introduced in lecture will be applied during figure drawing sessions. These lessons describe a proportion system developed by Robert Beverly Hale to define the human skeleton. After studying the skeleton, the course focuses on all major muscle groups and their influence on the human form. Lab 3, Studio 3 (Spring).
3
FDTN-121
2D Design I
This course is a structured, cumulative introduction to the basic elements and principles of two-dimensional design. Organized to create a broad introductory experience, the course focuses on the development of both a visual and a verbal vocabulary as a means of exploring, developing and understanding two-dimensional compositions. Concepts are introduced through lectures, discussions, demonstrations, research, assigned projects and critiques. The course addresses a wide variety of media, tools, techniques both traditional and technological, and theoretical concepts to facilitate skill development and experimentation with process. Visual comprehension, the ability to organize perceptions and horizontal thinking that crosses other disciplines and theories, are key foundational components to the development of problem solving skills. Accumulative aspects of the curriculum included the exploration of historical and cultural themes and concepts intertwined with aspects of personal interpretation and experience. (Undergraduate Art and Design) Studio 6 (Fall, Spring).
3
 
General Education – Ethical Perspective
3
 
General Education – Social Perspective
3
 
Programming Elective
3
Third Year
DDDD-301
Professional Practice (WI-PR)
The course focuses on preparing students to enter the professional world. Projects include the development of a resume, cover letter, artist's statement, bio, and portfolio. Focus is placed on submitting work to competitions, both visual and written, related to their work. (Prerequisites: DDDD-103 or equivalent course and completion of First Year Writing (FYW) requirement.) Lecture 3 (Fall).
3
DDDD-302
General Education Elective: History of Digital Graphics (WI-PR)
This course will focus on three-dimensional, and interactive design, covering the development of digitally based 3D graphics and imagery from their prehistory to the present. Additionally, the course will explore related technologies and the growth of the computer industry. Major pioneers and their contributions to the field are reviewed. The course traces the use of digital technology in the creation of graphics for design, interactive media, fine art, animation, visualization, and performance, with the majority of the time spent on more recent 3D and interactive graphics, ending with cutting-edge design and interactive technologies. Lecture 3 (Fall).
3
DDDD-306
Project Planning and Production
In this course students learn to develop design documents, timelines, budgets, marketing plans, and supporting material for potential projects. A project of their own design is then fully implemented and presented at the end of the term. (Prerequisites: DDDD-301 or equivalent course.) Lecture 3 (Spring).
3
 
3DDD Professional Electives
6
 
Open Electives
6
 
General Education – Immersion 1, 2
6
 
Art History Elective†
3
Fourth Year
DDDD-402
Senior Capstone I
The course focuses on implementation of a three-dimensional digital design project from the planning stage, through completion and presentation. By the end of the term the student will have completed at least half of the project and have made all of the aesthetic decisions relative to the project in preparation for an intense critique at the end of the term. (Prerequisites: DDDD-306 or equivalent course.) Lecture 3 (Fall, Spring).
3
DDDD-403
Senior Capstone II
The course focuses on the completion of a major three-dimensional digital design project from the planning stage, through completion and presentation. Based on the feedback received in the critique at the end of the previous sections of Senior Capstone I, students will refine and complete their project and prepare to submit their work to competitions and integrate it into their portfolio. Finished projects are presented in a Senior Capstone show. (Co-requisite: DDDD-402 or equivalent course.) Lecture 3 (Spring).
3
 
3DDD Professional Electives
12
 
Open Electives
9
 
General Education – Immersion 3
3
Total Semester Credit Hours
120

Please see General Education Curriculum (GE) for more information.

(WI) Refers to a writing intensive course within the major.

Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.

† Art History electives are non-studio courses searchable in SIS with the Art History attribute of ARTH.

Electives

3DDD Professional Electives
Course
DDDD-516
Advanced Studio: Topic
dimensional digital design not covered in other course work. Students will work closely with the instructor to research and complete tutorials in a new area. They will develop skills in that area and then create a tutorial explaining what they have learned. They will present what they have learned to the rest of the class as a means of extending their knowledge into specialized areas that are not covered in other course. Students must have an area of exploration defined in writing in advance of enrolling in the course, which must be approved by the instructor. (Prerequisite: DDDD-306 or SOFA-226 or ILLM-506 or equivalent course.) Lab 2, Lecture 2 (Fall, Spring).
DDDD-517
Experimental Workshop
The course focuses on implementing, advanced, newly developing ideas in three-dimensional computer graphics. The specific topic varies and is determined by the instructor. A specific course outline is provided each time the course is taught. Potential topics include the creation of interactive installations, game asset design, digital performances, cyber fashion, network art, locative media, scientific visualization, information visualization, event design, projection design, or any new area in digital design. This course has a subtopic and may be repeated with different subtopics; subtopics cannot be repeated. (Prerequisites: DDDD-206 or equivalent course.) Lecture 2, Studio 2 (Fall, Spring).
DDDD-521
Character Design and Rigging
This course will cover the design of characters and then the creation of them using three-dimensional software, inverse kinematics, parent and rigid binding, bones, and deformers. Students will design characters using techniques like interpretant matrices, model sheets, sketches, and maquettes followed by development of actual characters in software. Characters are designed for incorporation into motion graphics, games, real time applications, performance, or visualization. (Prerequisites: DDDD-201 and DDDD-203 or equivalent courses. Co-requisite: DDDD-208 or equivalent course.) Lecture 2, Studio 2 (Fall).
DDDD-522
Environment Design
This course covers modeling techniques useful in developing environments, both interior and exterior. The content of the course covers proportions appropriate to a variety of environments, lighting for spaces, surface design to replicate real world materials, and building to an appropriate level of detail for the circumstance. (Prerequisites: DDDD-201 and DDDD-207 or equivalent courses.) Lecture 2, Studio 2 (Fall).
DDDD-523
Hard Surface Design
The course focuses on designing and constructing hard surface models including machinery, furniture, vehicles, electronics, and robots. Students explore the use of different modeling techniques in the process and are particularly interested in the flow of the topology within the geometry. Some attention is given to creating controls for moving the hard surface models. (Prerequisite: DDDD-201 or equivalent course.) Lecture 2, Studio 2 (Fall).
DDDD-526
Physical Interface Design
This course covers the use of basic electronics so that students can develop embedded systems or controllers for games, design environments with ambient intelligence, design interactive museum exhibits and point of purchase installations, or embed electronics in clothing. Students use micro controllers, sensors, switches, lights, and motors to implement their designs. Lecture 2, Studio 2 (Spring).
DDDD-527
Real Time Design
In this course students design levels for games or virtual worlds for a variety of applications. Once the design is complete, the design is implemented using high-end three-dimensional software. In many cases the projects will be large and will be executed by teams of students. Versioning systems will be used to keep track of the most recently developed assets. Models are imported into real time software engines for manipulation. (Prerequisite: DDDD-201 or equivalent course.) Lecture 2, Studio 3 (Fall Or Spring).
DDDD-528
Simulating Natural Phenomena
Students will learn to simulate gasses, liquids and forces as well as develop complex organic systems in natural environments. Students will employ particle systems, physics engines, l-systems, and software designed especially for developing richly detailed natural environments. The content of the course encompasses both modeling natural environments and also phenomena in motion, such has windstorms, fire, cloth, hair, fur, and water. (Prerequisite: DDDD-201 or equivalent course.) Lecture 2, Studio 2 (Spring).
Programming Electives
Course
CMPR-271
Computational Problem Solving for Engineers
This course introduces computational problem solving. Basic problem-solving techniques and algorithm development through the process of top-down stepwise refinement and functional decomposition are introduced throughout the course. Classical numerical problems encountered in science and engineering are used to demonstrate the development of algorithms and their implementations. May not be taken for credit by Computer Science, Software Engineering, or Computer Engineering majors. This course is designed for Electrical Engineering and Micro-Electronic Engineering majors and students interested in the Electrical Engineering minor. (Prerequisites: (MATH-181 or MATH-181A or MATH-171) and (MCEE-BS or EEEE-BS or ENGRX-UND or EEEEDU-BS or ENGXDU-UND) or equivalent courses.) Lecture 3 (Fall, Spring).
CSCI-140
Computer Science for AP Students
This accelerated course covers material from the first-year sequence of courses and provides the foundation for all subsequent Computer Science courses. The course stresses problem solving while covering modern software development techniques and introducing essential software tools. Topics include tree and graph structures, nested data structures, objects, classes, inheritance, interfaces, object-oriented collection class libraries for abstract data types (e.g. stacks, queues, maps, and trees), and static vs. dynamic data types. Concepts of object-oriented design are a large part of the course. Software qualities related to object orientation, namely cohesion, minimal coupling, modifiability, and extensibility, are all introduced in this course, as well as a few elementary object-oriented design patterns. Input and output streams, graphical user interfaces, and exception handling are covered. Note: Requires department permission for registration. Lec/Lab 6 (Fall).
CSCI-141
Computer Science I
This course serves as an introduction to computational thinking using a problem-centered approach. Specific topics covered include: expression of algorithms in pseudo code and a programming language; functional and imperative programming techniques; control structures; problem solving using recursion; basic searching and sorting; elementary data structures such as lists, trees, and graphs; and correctness, testing and debugging. Assignments (both in class and for homework) requiring a pseudo code solution and an implementation are an integral part of the course. An end-of-term project is also required. Lec/Lab 6 (Fall, Spring).
IGME-101
New Media Interactive Design and Algorithmic Problem Solving I
This course provides students with an introduction to problem solving, abstraction, and algorithmic thinking that is relevant across the field of new media. Students are introduced to object-oriented design methodologies through the creation of event-driven, media-intensive applications. Students will explore the development of software through the use of a range of algorithmic concepts related to the creation of applications by writing classes that employ the fundamental structures of computing, such as conditionals, loops, variables, data types, functions, and parameters. There is an early emphasis on object oriented concepts and design. (This course is restricted to students in NWMEDID-BS or NMDE-BFA with at least 2nd year standing or GAMED-MN students.) Lec/Lab 6 (Fall, Spring).
IGME-105
Game Development and Algorithmic Problem Solving I
This course introduces students within the domain of game design and development to the fundamentals of computing through problem solving, abstraction, and algorithmic design. Students will learn the basic elements of game software development, including problem decomposition, the design and implementation of game applications, and the testing/debugging of their designs. (This course is restricted to GAMEDES-BS Major students.) Lec/Lab 6 (Fall, Spring).
ISCH-110
Principles of Computing
This course is designed to introduce students to the central ideas of computing. Students will engage in activities that show how computing changes the world and impacts daily lives. Students will develop step-by-step written solutions to basic problems and implement their solutions using a programming language. Assignments will be completed both individually and in small teams. Students will be required to demonstrate oral and written communication skills through such assignments as short papers, homework, group discussions and debates, and development of a term paper. Computer Science majors may take this course only with department approval, and may not apply these credits toward their degree requirements. Lec/Lab 3 (Fall, Spring).
ISTE-100
Computational Problem Solving in Network Domain I
A first course in using the object-oriented approach in the network domain. Students will learn to design software solutions using the object-oriented approach, to implement software solutions using a contemporary programming language, and to test these software solutions. Topics include thinking in object-oriented terms, problem definition, designing solutions using the object-oriented approach, implementing solutions using a contemporary programming language, and testing software solutions. Programming projects will be required. Lec/Lab 3 (Fall, Spring).
ISTE-120
Computational Problem Solving in the Information Domain I
A first course in using the object-oriented approach to solve problems in the information domain. Students will learn to design software solutions using the object-oriented approach, to visually model systems using UML, to implement software solutions using a contemporary programming language, and to test these software solutions. Additional topics include thinking in object-oriented terms, and problem definition. Programming projects will be required. Lec/Lab 6 (Fall, Spring).

Admission Requirements

Freshman Admission

For all bachelor’s degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations

• Studio art experience and a portfolio of original artwork are required for all programs in the schools of Art and Design. A portfolio must be submitted. View Portfolio Requirements for more information.

Transfer Admission

Transfer course recommendations without associate degree
Courses in studio art, art history, and liberal arts. A portfolio of original artwork is required to determine admissions, studio art credit, and year level in the program. View Portfolio Requirements for more information.

Appropriate associate degree programs for transfer
Related programs or studio art experience in desired disciplines. A portfolio of original artwork is required to determine admissions, studio art credit, and year level in the program. View Portfolio Requirements for more information. Summer courses can lead to third-year status in most programs.

Learn about admissions, cost, and financial aid 

Latest News

  • December 1, 2021

    student in a studio filming a person sitting on a motorcycle.

    RIT educates tomorrow’s experts in virtual production

    MAGIC Spell Studios, RIT’s world-class digital media research and production facility, is bringing the latest in virtual production (VP) technology to RIT students. VP blends filmmaking, 3D graphics, computational photography, and real-time game engine rendering to produce in-camera visual effects similar to those seen in the groundbreaking work on Disney’s The Mandalorian and Marvel’s Avenger films.